Секция «Математика и механика»

Singularities of integrable systems: a criterion for non-degeneracy and a generalization monodromy, with an application to the Manakov top Тонконог Дмитрий Иванович

Студент

Московский государственный университет имени М.В. Ломоносова, Механико-математический факультет, Москва, Россия E-mail: dtonkonog@qmail.com

The talk will partially be based on author's preprint arXiv:1009.0863v1 [nlin.SI].

A (completely) integrable Hamiltonian system $(M, \omega, h_1, \ldots, h_n)$ is a symplectic 2*n*manifold (M, ω) with functionally independent commuting functions $h_1, \ldots, h_n : M \to \mathbb{R}$ called integrals. The momentum map $\mathcal{F} : M \to \mathbb{R}^n$ given by $\mathcal{F}(x) := (h_1(x), \ldots, h_n(x))$. The Hamiltonian vector field of a function g on M is denoted by sgrad g. A point $x \in M$ is called a singular (critical) point of rank $r, 0 \leq r$, if $d\mathcal{F}|_x = r$. For such points, there is a natural notion of non-degeneracy [1], [2]. We recall this definition for zero-rank critical points below.

In general, non-degenerate singularities are important because they are generic and because the structure of integrable systems in their neighborhood is well understood, see survey [3]. We present a geometric criterion for non-degeneracy of a singularities of integrable Hamiltonian systems, see Theorem 1 below.

The criterion is applied to prove non-degeneracy of the saddle-saddle singularity in the Manakov top system [4]. We use the proved non-degeneracy and Fomenko theory [2] to obtain explicit semilocal description of the singularity. This description allows to detect a phenomenon which appears in the Manakov top. It naturally generalizes Hamiltonian monodromy introduced by Duistermaat [5] and bidromy introduced recently by Sadovskii and Zhilinskii [6]. We call it *partial monodromy*. Sinitsyn and Zhilinskii [4] showed that no Hamiltonian monodromy in any previously known sence appears in the Manakov top and encouraged further study of the system; our results develop the topic.

Definition 1. Let $(M, \omega, h_1, \ldots, h_n)$ be an integrable Hamiltonian system. A zero-rank singular point $P \in M$ is called *non-degenerate* if the commutative subalgebra K of $sp(2n, \mathbb{R})$ generated by linear parts of Hamiltonian vector fields sgrad h_1, \ldots , sgrad h_n at point P is a Cartan subalgebra of $sp(2n, \mathbb{R})$.

Theorem 1. Consider a completely integrable Hamiltonian system $(M, \omega, h_1, \ldots, h_n)$. Let $\mathcal{F} : M \to \mathbb{R}^n$ be the momentum map and $P \in M$ be a zero-rank singular point of the system. Denote by K the set of all singular points of rank 1 in a neighborhood of P. If the following conditions hold, then P is non-degenerate:

(a) There exists a non-degenerate linear combination of forms $\{d^2h_i|_P\}_{i=1}^n$.

(b) The image $\mathcal{F}(K)$ contains n smooth curves $\gamma_1, \ldots, \gamma_n$, each curve having P as its end point or its inner point (examples for n = 2 are found on the figure). The vectors tangent to $\gamma_1, \ldots, \gamma_n$ at $\mathcal{F}(P)$ are independent in \mathbb{R}^n .

(c) K is a smooth submanifold of M or, at least, $K \cup \{P\}$ coincides with the closure of the set of all points $x \in K$ having a neighborhood $V(x) \subset M$ for which $K \cap V(x)$ is a smooth submanifold of M.

Remark. Notice that condition (c) is very weak. For example, it automatically holds

if the integrals h_i are polynomials (in a suitable system of local coordinates at point P) because in this case each D_i is given by a system of algebraic equations.

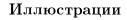
Литература

- Eliasson L.H., Normal forms for Hamiltonian systems with Poisson commuting integrals

 elliptic case // Comment. Math. Helvetici 65 (1990), 4-35.
- 2. Bolsinov A.V., Fomenko A.T., Integrable Hamiltonian systems. Geometry, topology, classification. Chapman and Hall/CRC, Boca Raton, Florida, 2004.
- Bolsinov A.V., Oshemkov A.A., Singularities of integrable Hamiltonian systems, In: Topological Methods in the Theory of Integrable Systems, Cambridge Scientific Publ., 2006, 1-67.
- 4. Sinitsyn E., Zhilinskii B., Qualitative Analysis of the Classical and Quantum Manakov Top // SIGMA 3 (2007), 046, 23 pages. arXiv:math-ph/0703045v1
- Duistermaat J.J., On global action angle coordinates // Comm. Pure Appl. Math. 33 (1980), 87-706.
- Sadovskii D., Zhilinskii B., Hamiltonian systems with defined 1:1:2 resonance: Manifestation of bidromy // Ann. Phys. 322 (2007), 164–200.

Слова благодарности

The work was partially supported by Euler-Program at DAAD (German Academic Exchange Service) in 2010, by Dobrushin scholarship at the Independent University of Moscow in 2011 and by a Federal Target Program grant 02.740.115213 "Bi-Hamiltonian structures and singularities of integrable systems" in 2010/11. The author is grateful to A.V. Bolsinov and A.T. Fomenko for fruitful discussions and constant support.



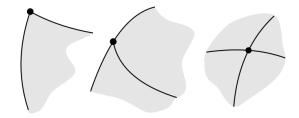


Рис. 1: Bifurcation diagrams satisfying condition (b) of Theorem 1.